Agriculture and Agri-Food Canada Explores Ways to Improve Preserving Bovine Eggs
Set up an interview
Media Relations
Agriculture and Agri-Food Canada
1-866-345-7972
aafc.mediarelations-relationsmedias.aac@canada.ca
Preserving genetic material is an important way to ensure the long-term viability of Canada's agriculture sector, because it ensures scientists will have diverse genetic material for future breeding.
Vitrification has become a common practice in preserving animal genetic material, but it does not work well for bovine eggs. Using synchrotron technology, Agriculture and Agri-Food Canada (AAFC) research gives us a new look at what happens inside these egg cells and makes a surprising discovery.
Preserving Animal Germplasm
While seed diversity and conservation initiatives are well established in Canada and around the world, the preservation of farm animal genetic material remains a challenge, mainly because of the associated costs and technical difficulties of storing animal and poultry germplasm (sperm, eggs, embryos and gonads).
Mammalian genetic material can be stored at ultra-low temperatures in liquid nitrogen via a slow freezing process called cryopreservation. However, livestock oocytes – also known as female eggs – are difficult to preserve.
Dr. Muhammad Anzar, AAFC Cryobiologist with the Canadian Animal Genetic Resources Program (CAGR) in Saskatoon, has researched how to improve the preservation of livestock breeds, specifically bovine eggs.
Vitrification
Vitrification is a simple and cost-effective procedure that takes preservation to the next level.
Vitrification is the ultra-rapid cooling of tissue where the tissue is not technically frozen (no ice crystals form) but rather maintained in a glass-like or "vitreous" state at ultra-low temperature. In vitrification, most of the water in a cell is replaced with cryoprotectants (antifreeze compounds) and cooled ultra-rapidly. The cells cool at a rate of about 4,000 to 5,000°Celcius a minute or more, so ice has almost no time to form, with the cell instead reaching a glass phase.
Dr. Anzar undertook a new research technique with the Canadian Light Source (CLS) using the synchrotron x-ray beamline to get a better look at what happens to the bovine egg when it undergoes the vitrification process. He is the only scientist attempting to confirm the ice or glass phase in cells or tissues of bovine eggs, which makes this research very unique.
Findings
Through a partnership with Dr. Pawel Grochulski from the Canadian Macromolecular Crystallography Facility (CMCF) at CLS in Saskatoon, it has been confirmed that inside the bovine egg, ice crystals still continue to form. Something about the egg is resistant to preservation.
"We were able to use the synchrotron x-ray beamline at the CMCF and, for the first time, get a rare look at what is act – it's not what was expected."
- Dr. Muhammad Anzar, AAFC Cryobiologist, Canadian Animal Genetic Resources Program, Saskatoon, Saskatchewan
The reason for the resistance is yet to be uncovered, but with this new ability to observe crystal formation in the vitrification process, Dr. Anzar will continue his exploration. Future research could use fluorescent biomarkers to determine the cells’ health in the frozen state, or look into what is preventing the egg cells from reaching a glass-like phase.
Key Discoveries
- Through a partnership with the Canadian Macromolecular Crystallography Facility (CMCF) at the Canadian Light Source, for the first time, x-ray diffraction technology was used to confirm that, contrary to the popular theory, inside the bovine egg, ice crystals still continue to form.
- This study opened a gateway to study the behavior of cells at low temperature, and that will be a new dimension for using CMCF to improve the frozen cells’ health.
Photo Gallery



Related Information
- Journal Article
- Canadian Light Source: Preserving Genetic Diversity
- Canadian Animal Genetic Resources Program
- Dr. Muhammad Anzar
Report a problem on this page
- Date modified: