Language selection

Search

Effect of reducing milk production using a prolactin-release inhibitor or a glucocorticoid on metabolism and immune functions in cows subjected to acute nutritional stress

Ollier, S., Beaudoin, F., Vanacker, N., Lacasse, P. (2016). Effect of reducing milk production using a prolactin-release inhibitor or a glucocorticoid on metabolism and immune functions in cows subjected to acute nutritional stress, 99(12), 9949-9961. http://dx.doi.org/10.3168/jds.2016-11711

Abstract

© 2016 American Dairy Science Association When cows are unable to consume enough feed to support milk production, they often fall into severe negative energy balance. This leads to a weakened immune system and increases their susceptibility to infectious diseases. Reducing the milk production of cows subjected to acute nutritional stress decreases their energy deficit. The aim of this study was to compare the effects on metabolism and immune function of reducing milk production using quinagolide (a prolactin-release inhibitor) or dexamethasone in feed-restricted cows. A total of 23 cows in early/mid-lactation were fed for 5 d at 55.9% of their previous dry matter intake to subject them to acute nutritional stress. After 1 d of feed restriction and for 4 d afterward (d 2 to 5), cows received twice-daily i.m. injections of water (control group; n = 8), 2 mg of quinagolide (QN group; n = 7), or water after a first injection of 20 mg of dexamethasone (DEX group; n = 8). Feed restriction decreased milk production, but the decrease was greater in the QN and DEX cows than in the control cows on d 2 and 3. As expected, feed restriction reduced the energy balance, but the reduction was lower in the QN cows than in the control cows. Feed restriction decreased plasma glucose concentration and increased plasma nonesterified fatty acid (NEFA) and β-hydroxybutyrate (BHB) concentrations. The QN cows had higher glucose concentration and lower BHB concentration than the control cows. The NEFA concentration was also lower in the QN cows than in the control cows on d 2. Dexamethasone injection induced transient hyperglycemia concomitant with a reduction in milk lactose concentration; it also decreased BHB concentration and decreased NEFA initially but increased it later. Feed restriction and quinagolide injections did not affect the blood concentration or activity of polymorphonuclear leukocytes (PMN), whereas dexamethasone injection increased PMN blood concentration but decreased the proportion of PMN capable of inducing oxidative burst. Incubation of peripheral blood mononuclear cells in serum harvested on d 2 of the restriction period reduced their ability to react to mitogen-induced proliferation, and injection of quinagolide or dexamethasone could not alleviate this effect. This experiment shows that prolactin-release inhibition could be an alternative to dexamethasone for reducing milk production and energy deficit in cows under acute nutritional stress, without disturbing immune function.

Report a problem on this page
Please select all that apply:
Date modified: