Language selection

Search

Forage use to improve environmental sustainability of ruminant production

J. Guyader, H. H. Janzen, R. Kroebel, K. A. Beauchemin, Forage use to improve environmental sustainability of ruminant production, Journal of Animal Science, Volume 94, Issue 8, August 2016, Pages 3147–3158, https://doi.org/10.2527/jas.2015-0141

Abstract

Ruminants raised for meat and milk are important sources of protein in human diets worldwide. Their unique digestive system allows them to derive energy and nourishment from forages, making use of vast areas of grazing lands not suitable for arable cropping or biofuel production and avoiding direct competition for grain that can be used as human food. However, sustaining an ever-growing population of ruminants consuming forages poses a dilemma: while exploiting their ecological niche, forage-fed ruminants produce large amount of enteric methane, a potent greenhouse gas. Resolving this quandary would allow ruminants an expanded role in meeting growing global demands for livestock products. One way around the dilemma is to devise forage-based diets and feeding systems that reduce methane emissions per unit of milk or meat produced. Ongoing research has made significant strides toward this objective. A wider opportunity is to look beyond methane emissions alone and consider all greenhouse gas emissions from the entire livestock-producing system. For example, by raising ruminants in systems using forages, some of the methane emissions can be offset by preserving or enhancing soil carbon reserves, thereby withholding carbon dioxide from the air. Similarly, well-managed systems based on forages may reduce synthetic fertilizer use by more effective use of manure and nitrogen-fixing plants, thereby curtailing nitrous oxide emissions. The potential environmental benefits of forage-based systems may be expanded even further by considering their other ecological benefits, such as conserving biodiversity, improving soil health, enhancing water quality, and providing wildlife habitat. The quandary, then, can be alleviated by managing ruminants within a holistic land-livestock synchrony that considers not only methane emissions but also suppression of other greenhouse gases as well as other ecological benefits. Given the complexity of such systems, there likely are no singular "best-management" practices that can be recommended everywhere. Using systems-based approaches such as life cycle analysis, ruminant production can be tuned for local lands to achieve greatest net benefits overall. In many instances, such systems, based on forages, may maintain high output of milk and meat while also furnishing other ecosystem benefits, such as reduced overall greenhouse gas emissions.

Report a problem on this page
Please select all that apply:
Date modified: