Language selection


Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken

Forgetta, V., Rempel, H., Malouin, F., Vaillancourt, J., Topp, E., Dewar, K., Diarra, M.S. (2012). Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken, 91(2), 512-525.


An Escherichia spp. isolate, ECD-227, was previously identified from the broiler chicken as a phylogenetically divergent and multidrug-resistant Escherichia coli possessing numerous virulence genes. In this study, whole genome sequencing and comparative genome analysis was used to further characterize this isolate. The presence of known and putative antibiotic resistance and virulence open reading frames were determined by comparison to pathogenic (E. coli O157:H7 TW14359, APEC O1:K1:H7, and UPEC UTI89) and nonpathogenic species (E. coli K-12 MG1655 and Escherichia fergusonii ATCC 35469). The assembled genome size of 4.87 Mb was sequenced to 18-fold depth of coverage and predicted to contain 4,376 open reading frames. Phylogenetic analysis of 537 open reading frames present across 110 enteric bacterial species identifies ECD-227 to be E. fergusonii. The genome of ECD- 227 contains 5 plasmids showing similarity to known E. coli and Salmonella enterica plasmids. The presence of virulence and antibiotic resistance genes were identified and localized to the chromosome and plasmids. The mutation in gyrA (S83L) involved in fluoroquinolone resistance was identified. The Salmonella-like plasmids harbor antibiotic resistance genes on a class I integron (aadA, qacEΔ-sul1, aac3-VI, and sulI) as well as numerous virulence genes (iucABCD, sitABCD, cib, traT). In addition to the genome analysis, the virulence of ECD-227 was evaluated in a 1-d-old chick model. In the virulence assay, ECD-227 was found to induce 18 to 30% mortality in 1-d-old chicks after 24 h and 48 h of infection, respectively. This study documents an avian multidrug-resistant and virulent E. fergusonii. The existence of several resistance genes to multiple classes of antibiotics indicates that infection caused by ECD-227 would be difficult to treat using antimicrobials currently available for poultry. © 2012 Poultry Science Association Inc.

Report a problem on this page
Please select all that apply:

Date modified: