Language selection

Search

Fusion body formation, germ tube anastomosis, and nuclear migration during the germination of urediniospores of the wheat leaf rust fungus, Puccinia triticina

Wang, X., McCallum, B. (2009). Fusion body formation, germ tube anastomosis, and nuclear migration during the germination of urediniospores of the wheat leaf rust fungus, Puccinia triticina, 99(12), 1355-1364. http://dx.doi.org/10.1094/PHYTO-99-12-1355

Abstract

Vegetative or parasexual recombination is thought to be a key mechanism for the genetic diversity of cereal rust fungi. The process of germ tube fusion leading to hyphal anastomosis and nuclear recombination was analyzed in wheat leaf rust fungus, Puccinia triticina. Germ tube anastomosis was observed in 27 P. triticina isolates, each representing a different virulence phenotype. Germ tube fusion bodies (GFBs), which appeared as viscid globules formed at tips of germ tubes, were essential for germ tube anastomosis. The formation of GFBs was affected by the urediniospore density and the length of illumination during germination. GFBs were formed at the highest frequency when urediniospores were spread to a concentration of 1 × 106 urediniospores/ml and incubated in dark for 12 to 24 h during germination. GFB attached to either the side of another germ tube ("tip to side") or to another GFB formed at the tip of a second germ tube ("tip to tip"). In "tip to side" anastomosis, two nuclei in the germ tube bearing the GFB migrated into the second germ tube through the GFB which resulted in four nuclei within this germ tube. In "tip to tip" anastomosis, nuclei in both germ tubes migrated into the fused GFB and all four nuclei came into close proximity. Urediniospores of isolates MBDS-3-115 and TBBJ-5-11 were stained with DAPI (4′, 6′ diamine-2-phenylindole) and Nuclear Yellow (Hoechst S769121), respectively, and then mixed and germinated on water agar. Some fused GFBs contained nuclei stained with DAPI and nuclei stained with Nuclear Yellow in close proximity, demonstrating the fusion between genetically different P. triticina isolates. In some fused GFBs, "bridge-like" structures connecting different nuclei were observed. © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada 2009.

Report a problem on this page
Please select all that apply:
Date modified: