Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity.

Tian, D., Wang, H., Sun, J., and Niu, S. (2016). "Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity.", Environmental Research Letters, 11(2). doi : 10.1088/1748-9326/11/2/024012  Access to full text

Abstract

The continually increasing nitrogen (N) deposition is expected to increase ecosystem aboveground net primary production (ANPP) until it exceeds plant N demand, causing a nonlinear response and N saturation for ANPP. However, the nonlinear response of ANPP to N addition gradient and the N saturation threshold have not been comprehensively quantified yet for terrestrial ecosystems. In this study, we compiled a global dataset of 44 experimental studies with at least three levels of N treatment. Nitrogen response efficiency (NRE, ANPP response per unit N addition) and the difference in NRE between N levels (ΔNRE) were quantified to test the nonlinearity in ANPP response. We found a universal response pattern of N saturation for ANPP with N addition gradient across all the studies and in different ecosystems. An averaged N saturation threshold for ANPP nonlinearity was found at the N addition rates of 5-6 g m-2 y-1. The extent to which ANPP approaches N saturation varied with ecosystem type, N addition rate and environmental factors. ANPP in grasslands had lower NRE than those in forests and wetlands. Plant NRE decreased with reduced soil C:N ratio, and was the highest at intermediate levels of rainfall and temperature. These findings suggest that ANPP in grassland or the ecosystems with low soil C:N ratio (or low and high rainfall or temperature) is easier to be saturated with N enrichment. Overall, these results indicate that the beneficial effect of N deposition on plant productivity likely diminishes with continuous N enrichment when N loading surpasses the N saturation threshold for ANPP nonlinearity.

Date modified: