Spatial pattern of strawberry powdery mildew (Podosphaera aphanis) and airborne inoculum.

Van der Heyden, H., Lefebvre, M., Roberge, L., and Carisse, O. (2014). "Spatial pattern of strawberry powdery mildew (Podosphaera aphanis) and airborne inoculum.", Plant Disease, 98(1), pp. 43-54. doi : 10.1094/PDIS-10-12-0946-RE  Access to full text


The relationship between strawberry powdery mildew and airborne conidium concentration (ACC) of Podosphaera aphanis was studied using data collected from 2006 to 2009 in 15 fields, and spatial pattern was described using 2 years of airborne inoculum and disease incidence data collected in fields planted with the June-bearing strawberry (Fragaria × ananassa) cultivar Jewel. Disease incidence, expressed as the proportion of diseased leaflets, and ACC were monitored in fields divided into 3 × 8 grids containing 24 100 m2 quadrats. Variance-to-mean ratio, index of dispersion, negative binomial distribution, Poisson distribution, and binomial and beta-binomial distributions were used to characterize the level of spatial heterogeneity. The relationship between percent leaf area diseased and daily ACC was linear, while the relationship between ACC and disease incidence followed an exponential growth curve. The V/M ratios were significantly greater than 1 for 100 and 96% of the sampling dates for ACC sampled at 0.35 m from the ground (ACC0.35m) and for ACC sampled at 1.0 m from the ground (ACC1.0m), respectively. For disease incidence, the index of dispersion D was significantly greater than 1 for 79% of the sampling dates. The negative binomial distribution fitted 86% of the data sets for both ACC1.0m and ACC0.35m. For disease incidence data, the beta-binomial distribution provided a good fit of 75% of the data sets. Taylor's power law indicated that, for ACC at both sampling heights, heterogeneity increased with increasing mean ACC, whereas the binary form of the power law suggested that heterogeneity was not dependent on the mean for disease incidence. When the spatial location of each sampling location was taken into account, Spatial Analysis by Distance Indices showed low aggregation indices for both ACCs and disease incidence, and weak association between ACC and disease incidence. Based on these analyses, it was found that the distribution of strawberry powdery mildew was weakly aggregated. Although a higher level of heterogeneity was observed for airborne inoculum, the heterogeneity was low with no distinct foci, suggesting that epidemics are induced by well-distributed inoculum. This low level of heterogeneity allows mean airborne inoculum concentration to be estimated using only one sampler per field with an overall accuracy of at least 0.841. The results obtained in this study could be used to develop a sampling scheme that will improve strawberry powdery mildew risk estimation.

Date modified: