Dietary conjugated α-linolenic acid did not improve glucose tolerance in a neonatal pig model.

Castellano, C.-A., Baillargeon, J.-P., Plourde, M., Briand, S.I., Angers, P., Giguère, A., and Matte, J.J. (2013). "Dietary conjugated α-linolenic acid did not improve glucose tolerance in a neonatal pig model.", European Journal of Nutrition, 53(3), pp. 761-768. doi : 10.1007/s00394-013-0580-0  Access to full text


Purpose There is an increased interest in the benefits of conjugated α-linolenic acid (CLNA) on obesity-related complications such as insulin resistance and diabetes. The aim of the study was to investigate whether a 1 % dietary supplementation of mono-CLNA isomers (c9-t11-c15-18:3 + c9-t13-c15-18:3) improved glucose and lipid metabolism in neonatal pigs. Methods Since mono-CLNA isomers combine one conjugated two-double-bond system with an n-3 polyunsaturated fatty acid (PUFA) structure, the experimental protocol was designed to isolate the dietary structural characteristics of the molecules by comparing a CLNA diet with three other dietary fats: (1) conjugated linoleic acid (c9-t11-18:2 + t10-c12-18:2; CLA), (2) non-conjugated n-3 PUFA, and (3) n-6 PUFA. Thirty-two piglets weaned at 3 weeks of age were distributed among the four dietary groups. Diets were isoenergetic and food intake was controlled by a gastric tube. After 2 weeks of supplementation, gastro-enteral (OGTT) and parenteral (IVGTT) glucose tolerance tests were conducted. Results Dietary supplementation with mono-CLNA did not modify body weight/fat or blood lipid profiles (p > 0.82 and p > 0.57, respectively) compared with other dietary groups. Plasma glucose, insulin, and C-peptide responses to OGTT and IVGTT in the CLNA group were not different from the three other dietary groups (p > 0.18 and p > 0.15, respectively). Compared to the non-conjugated n-3 PUFA diet, CLNA-fed animals had decreased liver composition in three n-3 fatty acids (18:3n-3; 20:3n-3; 22:5n-3; p < 0.001). Conclusions These results suggest that providing 1 % mono-CLNA is not effective in improving insulin sensitivity in neonatal pigs.

Date modified: