How different long-term fertilization strategies influence crop yield and soil properties in a maize field in the North China Plain.

Zhao, B., Chen, J., Zhang, J.-B., Xin, X.-L., and Hao, X. (2013). "How different long-term fertilization strategies influence crop yield and soil properties in a maize field in the North China Plain.", Journal of Plant Nutrition and Soil Science, 176(1), pp. 99-109. doi : 10.1002/jpln.201200076  Access to full text

Abstract

The impact of fertilization on maize (Zea mays L.) yield and soil properties was investigated in a long-term (> 18 y) experimental field in N China. A completely randomized block design with seven fertilizer treatments and four replications was used. The seven fertilizer treatments were (1) compost (COMP), (2) half compost plus half chemical fertilizer (COMP1/2), (3) balanced NPK fertilizer (NPK), (4-6) unbalanced chemical fertilizers without one of the major elements (NP, PK, and NK), and (7) an unamended control (CK). In addition to maize yield, soil chemical and biological properties were investigated. Compared to the balanced NPK treatment, maize yield from the COMP treatment was 7.9% higher, from the COMP1/2 was similar, but from the NP, PK, NK, and CK treatment were 12.4%, 59.9%, 78.6%, and 75.7% lower. Across the growing season, microbial biomass C and N contents, basal soil respiration, and fluorescein diacetate hydrolysis, dehydrogenase, urease, and invertase activities in the COMP and COMP1/2 treatments were 7%-203% higher than the NPK treatment. Values from all other treatments were up to 60% lower than the NPK treatment. Maize yield is closely related to the soil organic C (OC) and biological properties, and the OC is closely related to various biological properties, indicating that OC is a suitable indicator for soil quality. Our results suggest the most limiting nutrient for improving the yield or soil quality was P, followed by N and K, and balanced fertilization is important in maintaining high crop yield and soil quality. Additionally, increases in OC, N, and biological activities in COMP and COMP1/2 treatments imply that organic compost is superior to the chemical fertilizers tested.

Date modified: