The decrease in milk yield during once daily milking is due to regulation of synthetic activity rather than apoptosis of mammary epithelial cells in goats.

Chedly, H.B., Lacasse, P., Marnet, P.-G., and Boutinaud, M. (2013). "The decrease in milk yield during once daily milking is due to regulation of synthetic activity rather than apoptosis of mammary epithelial cells in goats.", Animal, 7(1), pp. 124-133. doi : 10.1017/s1751731112001176  Access to full text

Abstract

Once daily milking (ODM) is a management practice that can improve working conditions and reduce production costs in dairy farming compared with twice daily milking (TDM). However, ODM is associated with a decrease in milk yield. Previous research indicated that disruption of tight junctions in the mammary gland may be one of the regulatory factors involved in the milk yield decrease observed during ODM. The aim of this study was to investigate the involvement of mammary epithelium disruption in the regulation of the activity and dynamics of mammary epithelial cells (MEC) during 5 weeks of ODM in goats. Twelve alpine goats (producing 3.67 ± 0.64 kg/day and 47 ± 1.6 days in milk) were assigned to two groups that were milked once or twice a day during 5 weeks and then switched back to TDM. Mammary biopsies were collected before and on days 2 and 16 of both ODM and TDM switchback periods. Milk purified epithelial cells were collected before and on days 1, 7, 21 and 28 during ODM as well on days 1 and 7 of the TDM switchback period. The mRNA levels of genes involved in the regulation of synthetic activity and apoptosis were analysed by RT-PCR in milk MEC and mammary biopsies. ODM decreased yields of milk (-23%), lactose (-23%) and casein (-16%). Lactose synthesis was regulated at the transcriptional level by downregulation of α-lactalbumin mRNA levels in both biopsy samples (-30%) and milk MEC (-74%). TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling) staining of mammary gland biopsies did not show any increase in cell apoptosis after 2 and 16 days of ODM (0.8% and 1%, respectively) despite upregulation of Bax mRNA levels in milk MEC. This suggests that the decrease in milk yield observed during ODM is attributable to a decrease in synthetic activity rather than to induction of MEC cell death. ODM induced the disruption of tight junctions in the mammary gland only on the first day of the treatment as indicated by increased blood lactose concentration. This indicates that the decrease in MEC activity observed over the 5 weeks of ODM was not due to disruption of the mammary gland tight junctions. There was no carryover effect of 5 weeks of ODM on milk production. Therefore, it appears that the decrease in milk yield that occurs during ODM in goats is due to regulation of synthetic activity rather than to apoptosis of MEC.

Date modified: