Morphological and molecular analyses in micropropagated berry plants acclimatized under ex vitro condition.

Debnath, S.C., Vyas, P., Goyali, J.C., and Igamberdiev, A.U. (2012). "Morphological and molecular analyses in micropropagated berry plants acclimatized under ex vitro condition.", Canadian Journal of Plant Science, 92(6), pp. 1065-1073. doi : 10.4141/CJPS2011-194  Access to full text


Berry crops include, but are not limited to, the members of the genera Fragaria (strawberry; Rosaceae), Rubus (brambles: raspberry and blackberry; Rosaceae), Vaccinium (blueberry, cranberry and lingonberry; Ericaceae) and Ribes (currant and gooseberry; Grossulariaceae). While berry fruits have long enjoyed huge popularity among consumers, tremendous progress in plant tissue culture, resulting in great advances in micropropagation, has occurred. The in vitro morphogenesis seems to be highly dependent on plant growth regulators and media used for culture, which is again genotype specific. Although automation of micropropagation in bioreactors has been advanced as a possible way of reducing the cost of propagation, optimal plant production depends on better understanding of physiological and biochemical responses of plants to the signals of the culture microenvironment and an optimization of specific physical and chemical culture conditions to control the morphogenesis of berry plants in liquid culture systems. Increased branching, vigorous vegetative growth and change in biochemical components are often noted in micropropagated plants acclimatized under ex vitro condition. Clonal fidelity can be a serious problem and strategies have been developed to reduce the variation to manageable levels. Molecular markers have been introduced in tissue culture research and can potentially be used in various facets of pertinent studies with berry crops. This paper describes in depth the progress of various aspects of berry propagation in vitro, the characterization of micropropagated berry plants for morphological characters, and the employment of molecular markers in these plants for the assessment of genetic fidelity, uniformity, stability and trueness-to-type among donor plants and tissue culture regenerants.

Date modified: